Secondary vertex Finders documentation

StRoot/StSecondaryVertexMaker/
StVOFinderMaker.cxx
StVOFinderMaker.h
StXiFinderMaker. cxx
StXiFinderMaker.h
StKinkMaker.cxx
StKinkMaker.h
StKinkLocalTrack.cc
StKinkLocalTrack.hh

StRoot/StSecondaryVertexMaker/doc/ :
docXiFinder.tex

— Strangeness group —
People to contact :
Betty Bezverkhny — SVT
Gene van Buren — VOFinder
Helen Caines — SVT
Julien Faivre — V0OFinder and XiFinder
Camelia Mironov — KinkFinder

(Up-to-date e-mail adresses can be taken from the hypernews).

Contents

Table of contents

List of figures

1

2

What are the VOFinder and XiFinder ?
Historical purpose for StSecondaryVertexMaker package

Overall algorithms of the codes

3.1 KinkFinder e e e e e
3.2 VOFInder e e e
3.3 XiFinder e e e e e e e e e
Structure of the Fortran and C+-+ codes
4.1 KinkFinder e e e
4.2 Common remarks for the VO/XiFinder L0 oL
4.3 VOFInder o e e e e
4.4 XiFinder e e e e e e e e e
4.4.1 Differences between Fortran and C++,
4.4.2 Calculation of the intersection pointso
4.4.3 Calculation of the dca between the V0 and the bachelor
4.4.4 Detailed algorithm and cuts

Magnetic field

Detectors

6.1 Cutvalues. e e e

6.2 Using the SVT hits o . o e

Rotating and like-sign

7.1 Like-sign analysis L e e

7.2 Rotating analysis L L e e e e e

How to use the V0/XiFinder

8.1 Runningin the BFC

8.2 Running stand-alone

8.3 Modifying the default parameterso oL
8.3.1 LikesignUsage and RotatingUsage
8.3.2 TrackerUsage o o i e e e
8.3.3 SVTUSAZE . . . o o v v i e e e e e e e e
8.3.4 EventModelUsage e
8.3.0 LanguageUsage i e e

8.4 Bewareoftheflags! e

Tests

9.1 Invariant mass peak L. Lo e e e e e

9.2 Deeplevel tests L L e e e e

9.3 Global tests L e e

10 To-do list

22

22
23
24

24
24
25

27
27
28
28
28
28
29
29
29
33

33
34
34
35

36

List of Figures

1 Overall algorithm of the VOFinder 6
2 Overall algorithm of the XiFinder L oL 7
3 Member-functions of StVOFinderMaker and StXiFinderMaker. 8
4 Cuts and algorithm of the VOFinder o o 9
5 Differences Fortran vs C++ in the XiFinder algorithm 12
6 Reshaping of casc_geom: Fortran to C++ L o oL L 13
7 Reshaping of the loop over the intersection points : Fortran to C++ 13
8 Projection of the cascade geometry in the 2-D plane (xOy) 15
9 3-D illustration of lines and points’ names introduced in the text 17
10 2-D plane evaluation of the quality of the approximation made by linearising the helix . . . 19
11 Cuts and algorithm of the XiFinder 21
12 BFC options dealing with strangeness reconstruction 27
13 Karnaugh map giving digit of VOLanguageUsage 30
14 Karnaugh map giving digit y of VOLanguageUsage 30
15 Karnaugh map giving digit « of XiLanguageUsage 30
16 Karnaugh map giving digit y of XiLanguageUsage 30
17 Karnaugh map giving digit z of XiLanguageUsage 31
18 Effect of the available options on the makers and pre-existing candidates 32
19 Effect of the available options on the V0 and Xi containers 33

20 Comparison of the Fortran and C++ XiFinders 34

VOFinder and XiFinder 1 - What are the VOFinder and XiFinder ¢

1 What are the VOFinder and XiFinder ?

Let’s first define the 3 different sorts of secondary vertices :
e Kink vertices : when a charged particle decays into a charged plus a neutral,
e V0 vertices : when a neutral particle decays into two charged particles,

e Xi vertices : when a charged particle decays into a charged plus a neutral, and then the neutral
daughter decays itself into two charged particles. One can’t say that a Xi vertex is a Kink followed
by a V0, because both charged tracks (mother and daughter) have to be seen in the TPC in order
to say that the vertex is a kink. This is not the case for Xi vertices, because the cr of particles
that do a Xi vertex is much shorter than the distance between the primary vertex and the TPC
(50 cm), even shorter than the distance to the first layer of the svT (6.7 ¢m, versus c¢7. = 4.9 em
and ct, = 2.5 cm).

People working on strange particles in the strangeness group need a piece of code that is able
to reconstruct the primary strange particles from the tracks. Those strange particles can be divided into
two groups :

e VO0’s : those particles (A, K?) decay into two particles (A — pr—, K0 — 777 ~). We need to
be able to search and find them using only the daughters’ tracks (that’s all we have !).

e Xi’s : those particles (E, Q) decay into 1 charged particle — called bachelor —and a A (E — An
Q — AK™). The A, as said in the previous item, decays into two particles. So here, we need
to find all combinations of 3 charged particles that are possibly the daughters of a unique strange
particle.

The algorithms of those codes are described in section 3.

From the beginning of STAR and until year 2002, the codes used were what will be called in
this documentation eziam and evfam. They are Fortran codes, located in pams/global/exi/exiam.F
and pams/global/ev0/ev0_am2.F, with other files that are necessary for the code to be run (basically
subroutines and interfacing functions).

So here is the “old” way to do things : the BFC is run, and it calls the series of makers that
it is supposed to call. Among those makers are StXiMaker and StVOMaker — the strangeness makers,
with StKinkMaker — and they are run after nearly all the other makers of the BFC, since they need the
tracks to be reconstructed and the primary vertex to be found. The VOMaker is run first, finds the V0’s,
and those feed the XiMaker, which tries to find Xi candidates for each V0. At a deeper level, inside the
Make () function of both the XiMaker and the VOMaker, are called the Fortran PAMs, i.e. respectively
evOam and exiam. PAM means either “Plugable Analysis Module” or “Physics Analysis Module”. T don’t
know if somebody knows which of the two it is !

The interfacing between the BFC (C++) and the PAMs (Fortran) won’t be discussed here. If you
want to know more, you can have a look at those files : pams/global/exi/exiam.idl, pams/global/-
ev0/ev0_am2.idl, pams/idl/dst_track.idl, pams/idl/dst_vertex.idl, pams/idl/dst_vO_vertex.-
idl, pams/id1l/dst xi vertex.idl. The data are passed — from maker to maker, and also between a
maker and the PAM that it calls — by tables. For example the tracks are stored in a table, and ev0am will
read the table to have the tracks’ parameters. It will then store the V0’s in another table. Then, exiam
will read this table and the table of tracks, and write the Xi’s found in a third table. Classes for interfacing

VOFinder and XiFinder 3 - Owerall algorithms of the codes

have a general name which is “St_tableName_Table.h”, and they can be found in include/tables/ (as ex-
amples : St_exi_exipar_Table.h, St_ev0_aux_Table.h, St_dst_track_Table.h, St_dst_xi_vertex_Ta-
ble.h, etc... Further information about St_dst_track_Table can be found at root.cern.ch/root/html/-
TTable.html in the section “Class description”). On the other hand, the corresponding structures are
stored in pams/global/idl/, in files like exi_exipar.idl (general name of the file : tableName.idl ; gen-
eral name of the structure used afterwards : tableName_st). You could have a look at e.g. StXiMaker: :-
Init() (the VO and XiMaker’s are in StRoot/St_dst_Maker/) to have an example of how all this is used.
As explained in section 2, the strangeness Fortran PAMs had to be replaced with C++
code. As exiam and evOam refer to the corresponding PAMs, XiFinder and VOFinder are the names
we gave to their C++ translations. They are makers, whose complete names are StXiFinderMaker and
StVOFinderMaker. This is what we call the strangeness StSecondaryVertextMaker package.

2 Historical purpose for StSecondaryVertexMaker package

The StSecondaryVertexMaker package implements secondary vertex-finding in C+4. Why ¢ There is
and has been code for reconstucting secondary vertices in the form of the ev0, exi, and tkf PAMs. These
PAMs were written in Fortran and work with tables. They are called from C++ makers currently kept
in the St_dst_Maker package library. They work well, but suffer limitations :

e They cannot be re-run on DSTs after production,
e They cannot operate on the tracking output of ITTF.

In order to overcome both limitations, the preferred solution is to write C++ versions of these PAMs
which can use StEvent structures for both input and output (versus trying to convert StEvent structures
back into tables for input). This is the primary purpose of the StSecondaryVertexMaker package.

Advantages of being able to run such a code on the DSTs are that analysis such as rotating can
be done without running the whole BFC on the daq files, as well as analysis that require modifications
in the secondary vertex reconstruction code, like the value of the reconstruction cuts for example. The
time profit is huge, since it takes more than 20 times more time to run the whole reconstruction chain
than just the C++ secondary vertex reconstruction makers.

3 Overall algorithms of the codes

Apart from some parts described below, the VOFinder and XiFinder are essentially the ev0 and exi PAMs
rewritten from Fortran to C++4, from a “tabelized” way of communicating to a standard object-oriented,
mono-language code.

3.1 KinkFinder

To be written.

VOFinder and XiFinder 3 - Owerall algorithms of the codes

3.2 VOFinder

Cut parameters are initially requested from the database (time stamps determine what is the nature of
the data, e.g. p-p, Au-Au, d-Au). Then, tracks which satisfy a set of cuts are chosen as candidates for
V0 daughters. The daughter candidates are then examined in pairs of negative and positive daughters
to see if the tracks approach each other and pass a series of cuts to determine if they are consistent with
a V0 secondary decay.

Formerly, a second pass was required on the V0s. This was to facilitate their use in finding
Xi decays. VO0s from Xi decays are secondary V0s, and thus do not originate from the primary vertex.
This means looser cuts are necessary on these V0s than primary V0s. So, the first pass was made with
the loose cuts, the Xi decays were found, and then the V0s were run through tighter cuts to remove
unused ones which were inconsistent with being primary V0s. This second pass prevented the output of
significant numbers of unnecessary V0 candidates.

This second pass has been replaced by a different mechanism. Now, for each V0 which passes
the looser secondary V0 cuts, a UseVO() function is called. The idea is that a XiFinder can be written
which inherits from the VOFinder, and implements the UseVO() function to find Xi candidates with a
given V0. The UseV0() function then returns true or false depending on whether any Xi candidates are
found using that V0. Upon returning to the VOFinder code, the V0 is discarded if it neither passes the
cuts for a primary V0 nor gets used in the UseV0() function.

This scheme has the advantage of not inserting a VO into the StEvent vector of VOs unless
it is a viable candidate. It also reduces considerably the memory overhead required during VO-finding
as not all of the secondary V0 candidates are found and stored at once (particularly poignant in high-
multiplicity events where many thousands of secondary VOs are considered). This only disadvantage is
some overhead in making a function call in the middle of the VO0-finding loop.

Fic. 1 shows that even if the code of the VOFinder is quite long, the alorithm is definitely
simple.

‘ Container of tracks ‘

~

Loop over positive tracks
Loop over negative tracks
Find DCA between both helices
Apply cuts
If good candidate : store

‘ Container of VO vertices ‘

Fi1Gc. 1 : Owerall algorithm of the VOFinder.

3.3 XiFinder

The StXiFinderMaker inherits from StVOFinderMaker as indicated above. Because it is actually a
VOFinder itself via this inheritance, one need not instantiate a StVOFinderMaker if one instantiates a
StXiFinderMaker.

Similar to the StVOFinderMaker, appropriate cut parameters are initially requested from the
database. The same tracks that are considered for the VO0s are also used as daughter candidates for
the Xis. The Make() member function then simply calls the inherited Make () member function from

VOFinder and XiFinder 4 - Structure of the Fortran and C++ codes

the StVOFinderMaker. Control comes back to the StXiFinderMaker at the call to UseVO(), which is
implemented here as a loop over Xi daughter candidates to be paired with the VO daughter candidate.
If the daughters approach each other and pass a series of cuts, the candidate is accepted and stored in
StEvent. Control is then passed back to the VOFinder, with a return value indicating whether the V0
was in fact used.

As for the VOFinder, F1G. 2 below shows that the XiFinder alorithm is very simple, although
the code is long. More detailed algorithms can be found in section 4.

| Container of V0 vertices Container of tracks |

Loop over V0 vertices
Apply cuts on the VO and VO daughters
Loop over global tracks
If track has wrong charge : next
If track already used in the V0 : next
Find DCA between V0’s straight line and track’s helix
Apply cuts
If good candidate : store

‘ Container of Xi vertices ‘

F1G. 2 : QOverall algorithm of the XiFinder.

4 Structure of the Fortran and C+-+4 codes

4.1 KinkFinder

To be written.

4.2 Common remarks for the VO/XiFinder

The first thing to mention is a change in the interaction between the VOFinder and the XiFinder. The
XiFinder actually uses the V0’s that have first been found by the VOFinder. The table below shows how
this is done in the Fortran code :

Call StVOMaker: :Make() | Finds V0’s and store them in a table

Call StXiMaker: :Make() | Loops over the V0’s in the table to find Xi candidates
Call StVOMaker: : Trim() | Loops over the V0’s in the table to throw away the
non-primary V0’s that are not used in a Xi candidate

This waste of memory (storing V0’s that will be deleted afterwards) and of time (scanning
twice the table of V0’s) is solved in the C++ code, by the fact that the class StXiFinderMaker actually
inherits from StVOFinderMaker. The member-functions of each of them and their role are listed in
Fic. 3.

VOFinder and XiFinder 4 - Structure of the Fortran and C++ codes

Note that StXiFinderMaker::Init() is the equivalent of StVOFinderMaker: :GetPars().
The effect of the function StVOFinderMaker: :DontZapVO0s is that the V0’s that are already in StEvent are
kept, the V0’s found by the VOFinder will be added. The function StVOFinderMaker: :UseExistingV0s
also keeps the V0’s that are already in StEvent, but also prevents the VOFinder to be run, and forces the
XiFinder to use the V0’s previously found. The function StVOFinderMaker: :UseITTFTracks has been
implemented for ITTF test purposes, since it allows the user to choose between using the ITTF tracks or
using the tracks found by the reconstruction code used up to now (TPT).

When the VOFinder is run alone, the method StVOFinderMaker: :UseVO() is called for each
V0 found, and returns false, since we don’t want to find Xi’s.

When both the XiFinder and VOFinder are run, the XiFinder first calls StVOFinderMa-
ker: :Make (). This function finds V0’s and, for each of them, calls the UseV0() method. The latter runs
the XiFinder algorithm, that will eventually tell StVOFinderMaker: :Make () if the current VO has been
used in Xi candidates or not. This way to do, compared with the Fortran one, saves time and memory.

\ Function | Role in the VOFinder | Role in the XiFinder |
Init | Inits Gets exipar from the database
Make | VOFinder “central” algorithm Calls the VOFinder
Clear | Clears Not redefined
GetPars | Gets evOpar2 from the database Not redefined (not used)
Prepare | Finds event-wise parameters, fills tables | Not redefined
UseVO | Returns false XiFinder “central” algorithm
UseExistingVOs | Sets a boolean flag Not redefined
DontZapVOs | Sets a boolean flag Not redefined
SetTrackerUsage | Sets a integer flag Not redefined
GetTrackerUsage | Returns a integer flag Not redefined
SetSVTUsage | Sets a integer flag Not redefined
GetSVTUsage | Returns a integer flag Not redefined
SetVOLanguageUsage | Sets a integer flag Not redefined
GetVOLanguageUsage | Returns a integer flag Not redefined
SetXiLanguageUsage | Sets a integer flag Not redefined
GetXiLanguageUsage | Returns a integer flag Not redefined
SetLanguageUsage | Sets a integer flag Not redefined
GetLanguageUsage | Returns a integer flag Not redefined
SetLikesignUsage | Sets a integer flag Not redefined
GetLikesignUsage | Returns a integer flag Not redefined
SetRotatingUsage | Sets a integer flag Not redefined
GetRotatingUsage | Returns a integer flag Not redefined
SetEventUsage | Sets a integer flag Not redefined
GetEventUsage | Returns a integer flag Not redefined
Trim | Remove the V0’s that don’t pass cuts Not redefined (not used)

F1c. 3 : Member-functions of StVOFinderMaker and StXiFinderMaker.

The table below shows how this is run in the C++ XiFinder (provided that it’s the XiFinder
that is called and not just the VOFinder) :

VOFinder and XiFinder

4 - Structure of the Fortran and C++ codes

Call StXiFinderMaker: :Make ()
Call StXiFinderMaker: :Prepare()
Call StVOFinderMaker: :Make ()
Call StXiFinder: :UseV0()
(back in VOFinderMaker: :Make)

(Calls everything below)

Finds event-wise parameters and fills the tables

Finds VO0’s in this event

Finds Xi’s for a given V0 and store them in StEvent

If VO is used in Xi’s / may be primary : stores in StEvent

4.3 VOFinder

F1G. 4 shows the detailed structure of the VOFinder, with all the cuts that are applied. Of course, more
accurate information can be found... by looking at the code ;-) .

Get parameters from database
Get event
Get position of the primary vertex
Loop over all tracks
Select TPT vs ITTF
If bad flag : next
If bad detector 1D : next
If no geometry : next
CUT 1 on number of hits
If 1st track : get magnetic field
Store track and parameters in tables
I (separately pos. and neg.)
Loop over positive tracks
Loop over negative tracks
Select TPT vs ITTF tracks
Determine V(0’s detector ID
CUT 2 on number of hits
CUT 1 on dcaTrackToPvx if “low” p |
Find number of intersection points between both helices
Find 2D dca between both helices at both intersection points
Keep the smallest dca
CUT if one track (or both) doesn’t point away from Pvx
CUT if VO decays after first hit of either track
Calulate approximated 3D dca between both helices
CUT on dcaV0Daughters
CUT 2 on dcaTrackToPvx if “low” p)
CUT on decay length from Pvx
CuUT if VO doesn’t point away from Pvx
CUT on dcaV0ToPvx
CUT on grm
cuTonpy,,..
Fill an StVOVertex
Call UseVO0 to find if this VO is used for Xis
| If primary or used in Xi: store

Fi1c. 4 : Cuts and algorithm of the VOFinder.

VOFinder and XiFinder 4 - Structure of the Fortran and C++ codes

Before the loops, tables called ptrks, ntrks, etc..., are filled in the function StVOFinderMa-
ker: :Prepare(), and the values used afterwards are those that are stored in these tables, in order to
improve the speed of the code.

The cuts’ values are got in the function StVOFinderMaker: :GetPars(), and stored in the
member objects pars and pars2. Here are the components :
n_point : number of hits,
dcapnmin : distance of closest approach between the daughter tracks and the primary vertex,
dca : distance of closest approach between the VO daughters,
dlen : decay length of the VO,
dcav0 : distance of closest approach between the VO trajectory and the primary vertex,
alpha_max : « Armanteros,

ptarm max : p; Armanteros.

In the description of the algorithm, not that the cut on the number of hits is mentionned
twice : the first one is in the code only since March 4th 2004, while the second one has been removed
the same day. The effect of the 2nd one is to cut only the VO daughters, exactly as done in the Fortran
code. Yet, cutting also the Xis’ bachelors dramatically reduces the background (it’s cut by 19 %), so
the cut on the number of hits has been moved to where it is now (cut 1), so as to cut the tracks directly
before even filling the table of tracks that will be used afterwards in the code. It therefore saves time
and memory.

A second cut that wasn’t in the Fortran code has been added in the VOFinder : it requires
that the VO decays before the first hit of each of its daughters’ tracks.

A third change between Fortran and C++ is the few lines of code that calculate the 3D-dca
between both helices. The Fortran-equivalent code has been kept as a comment in the current C++ code,
and both blocks (the new one and the Fortran-equivalent one) are clearly mentionned in the VOFinder
code.

Some information about each cut applied :

e Number of hits : both tracks must have a number of hits > DB!->n_point

e DcaTrackToPvx : dca between each of the tracks and the primary vertex : see explanations in
the next paragraph

e Track points away from Pvx : both tracks have to point away from the primary vertex, i.e. if
we call X the primary vertex and M the point of a track that is the closest to the other helix,
ﬁ + XM must be positive

e VO decays after the first hit of either track : this cut removes obviously bad candidates (or bad
decay lengths calculations) which have a decay length that is e.g. longer than the size of the TPC.
The first hit is assumed to be at StPhysicalHelix::origin. Calling it H, and V the V0 decay
point, the requirement is that m . V—I-} must be positive

e DcaVO0Daughters : the calculated dca between both tracks has to be < DB->dca

e Decay length : the calculated VO decay length has to be > DB->dlen. It’s actually the distance
between the primary vertex and the VO decay point, so it matches with the decay length only
for the primary V0’s

e V0 points away from Pvx : calling X the primary vertex and A the point where both helices are
closest to each other, p_A> . ﬂ must be positive

e DcaV0ToPvx : the calculated dca between the V0 and the primary vertex must be < DB->dcav0

e Alpha Armanteros : a4y, must be < DB->alpha max

!Database.

10

VOFinder and XiFinder 4 - Structure of the Fortran and C++ codes

e Pt Armanteros : p, ~ must be < DB->ptarm max

Now, the dcaTrackToPvx cut requires some non-obvious explanations. Its second occurence
is simple to understand : it is a cut on the dca of both tracks to the primary vertex — both have to be >
DB->dcapnmin — that is applied only when pivo is lower than a variable called ptV0sq, and whose value
is set to (3.5 GeV)? in the constructor of StVOFinderMaker. This is done to cut less signal at high-p ,
an area where there is very few background, thus enabeling a loosening of the cuts.

Its first occurence is done to apply this cut as soon as possible, for the code to be faster (less
track pairs to process), at a time when p_VO) is not calculated yet. The reason why this is possible is that,
indexing with n (resp. p) what is related with the negative (resp. postive) daughter,

Pin+DPip > Plyo (1)

Here is the demonstration : let’s call r the axis that is parallel to p_Vg , 0 the perpandicular axis. With
these (u;, uj) coordinates, we have :

{ Pvo, — Pn, + Pp,
Pvo, = Pngt+DPp =0

ie. :
Plyo = Pyo, = Pn, T Pp,

Since pipn > pn, and pip > pp, ', we obtain :

Pin+tPip> P, +Pp, =Plye » QED?

So the first occurence of the dcaTrackToPvx cut applies this cut when (pi, + p1p)? < ptVOsq, with
ptV0sq = 3.5 GeV, because according to (1), any track pair cut by this condition would anyway have
been cut by the second occurence of the dcaTrackToPvx cut (because pi,, <pin+p 1p <35 GeV).
For security, a factor of 0.98 multiplies the p, limit in the first occurence of the cut. To sum
up :
e First occurence : if p 1, +p1, < V0.98 x 3.5 GeV, apply the dcaTrackToPvx cut on both tracks
e Second occurence : if p; ,, < 3.5 GeV, apply the dcaTrackToPvx cut on both tracks

4.4 XiFinder
4.4.1 Differences between Fortran and C++

The differences between the Fortran code and the C++ code are shown in FI1G. 5, on the half-detailed
algorithm. The red lines show what has disappeared, either because of the new structure of the code, or
because of the fact that we are using StEvent. The green lines show the parts that have been reshaped,
for the same reasons as several parts have been removed.

Apart from these modifications, the code is a simple translation from Fortran to C++. This
may change once we are convinced that the C++ code has no bug : we may then want to have the code
more readable, or better organised, or we may even want to replace some calculation algorithms.

So far, the code is all in one block, for speed purposes, and the beginning and end of each
former Fortran subroutine is indicated by commented lines. Once again, when we are sure that we don’t
need to compare the C++ and Fortran codes anymore, we’ll probably remove all this.

!Because of the opening angle of the VO decay, the inequality is most often strict.
2Quod erat demonstrandum, not quantum electrodynamics ;-) .

11

VOFinder and XiFinder 4 - Structure of the Fortran and C++ codes

Avoiding calls to subfunctions resulted in a duplication of a certain part of the code. Figure
7 shows how the C++ code structure fits to the Fortran one, but let’s detail the changes (green lines in
F1G. 5) one by one.

Do things... Do things...
Loop over V0 vertices Loop over VO vertices

Find vertex key
Hits in which detectors

Loop over global tracks
Select correct charge
Don’t use VO tracks

Hits in which detectors
Parameters conversion
Subroutine circle_param

Calculate dca V0/bachelor in 2D

Subroutine update_track_param

Approxim. of 3D-dca by lineari-
sation of the helix

Subroutine track mom

Check validity of linear approx.

Subroutine ev0_project_track

If not good enough : try again

(up to 3 tries)

Hits in which detectors

Loop over global tracks
Select correct charge
Don’t use VO tracks
Hits in which detectors

Calculate dca VO0/bachelor in 2D

Subroutine update_track_param
Approxim. of 3D-dca by lineari-
sation of the helix

Check validity of linear approx.

Subroutine ev0_project track

If not good enough : try again
(up to 3 tries)

Fic. 5 : Differences Fortran vs C++ in the XiFinder algorithm.

The reshaping of the Lambda mass calculation consisted simply in calculating the invariant
mass using other parameters : taking the example of the A (as opposed to the A) invariant mass, we

have :
w = B - 73
— (By+E 2= (Ps+ 7)
= E2+E2+2E.E_ - P2 -P2 270, 7-
In Fortran, the E and ? terms are grouped together, and the invariant mass is calculated with this

formula :
m3 = m; + m72T +2E,E_ — 2?+?_

In C++, energies and momenta are kept separated, and the formula used is, as already written above :
m} = (By +EB-)?—(F++7-)* \
(VP2 +mz+ 72 +m2) -9}

To modify the structure of casc_geom and of the loop coloured in green in F1G. 5, I've written
the Fortran code as a set of for-loops, if-loops, goto’s and blocks of instructions. The figures below show

12

VOFinder and XiFinder 4 - Structure of the Fortran and C++ codes

those reashapings : F1G. 6 shows the reshaping of casc_geom, and F1Ga. 7 shows the reshaping of the
inside of the loop over the intersection points (between the bachelor’s helix and the V(’s straight line).
In Fi1a. 7, what is called Block 5 is actually a large part of the Fortran program, and it hasn’t been
reshaped.

if (ps # 0)
Block 1
if (¢ < 0) goto 137
| Block 2 if (p; #0)
else //(py, ==0) Block 1
Block 3 if (¢ < 0) Block 5
if (¢ < 0) goto 137 N | else Block 2
| Block 4 else //(py ==0)
exit //(from the subroutine) Block 3
Lbl 137 if (c < 0) Block 6
if (p; # 0) | else Block 4
| Block 5
else //(py ==0)
| Block 6

F1G. 6 : Reshaping of casc_geom : Fortran to C++.

tries=1 _
Block 1 tries=1
Lbl 60 Block 1
Block 2 Block 2
if (condl && tries<3) whlle? (condl && tries<3 && cond2)
Block 3 triest
if (cond2) //(Depends on Block 2) — Block 3
tries++ g}ociz ;1
Block 4 L Dloc¢
Goto 60 if (Bcloniig&& tries<3)
Block 5 Block 5
if (cond3) if (cond3) break
| Goto 30 //(Just after the for-loop)

F1G. 7 : Reshaping of the loop over the intersection points : Fortran to C++.

4.4.2 Calculation of the intersection points

Now, here is how are calculated the coordinates of the intersection points in the bending plane (zOy)
between the V0’s straight line and the bachelor’s helix (actually, of their projection in the bending plane).
This is done in the code in the former subroutine casc_geom.

Let’s call A the projection of the V0’s trajectory, and C the circle that is the projection of the
bachelor’s trajectory. Their equations are :

A:y=az+b C:(z—z)*+ (y —y.)> = R

13

VOFinder and XiFinder 4 - Structure of the Fortran and C++ codes

Calling (xg,yo) a point on the V0’s trajectory, and ? = (pg, Py, P>) its momentum, we obtain :
g Y Y

o= b=1yo - Xa,

Dz Dz

Thus : p
A:y="2L(z—1z0) + o

Pz

If we change the variables, with X =z —z. and Y =y — y., we have :

A:Y:&(X—F:cc—xo)—l—yo—yc C:X%2+Y?%?=R?

P

Now, we can search the intersection points. If we call §, = z. — zo and dy = . — Yo, we have
to solve this system of equations :

Y2 — R2 _ X2
2
{ v? — (;;_Z(X +0,) — 5y)
which, if we define a = py/p; and 8 = ad, — 6y, and modify the equations, becomes :

Y = (X +6;) — 6,
X%(a?+1)+2a8X + 82 -R>=0

If the condition R%(a? 4+ 1) > B2 is true, then we have 2 solutions, that are :
{ Y =a(X +6;) — 4y

_ afEy/R*(a?+1)-p2
X = aZ+1

The 2-D coordinates of these 2 points are stored in the code in variables called xOut and yOut.

4.4.3 Calculation of the dca between the VO and the bachelor

The algorithm that calculates the dca between the VO (a line) and the bachelor (a helix) is rather
intuitive (see also F1a. 11). This dca can’t be calculated analytically, so the trick is to linearise the helix
locally. This means that we will assume, for the dca calculation, that the helix is equal to its tangent at
the intersection point between the helix and the VO line.

Then, the position of the point of the tangent where the distance to the V0 line is the smallest
is calculated. To check that the linearisation is not a too strong approximation, the distance between
that point and the actual helix is calculated, and is required to be smaller than a certain fraction of the
helix’ radius. If this is true but if the distance is yet bigger than another fraction of the helix’ radius
(obviously smaller than the previous one), then the helix is linearised at the calculated point (instead of
the intersection point in 2-D), and the calculation is re-done.

This is done 3 times, or less if the distance between the calculated point and the actual helix
matches the second criterium after less than 3 loops. So all the candidates that match the first criterium
are kept, and those not matching the second criterium are simply improved by trying 3 times to linearise
the helix at a point that is closer to the actual point where the distance to the VO line is the smallest.

The first part of the algorithm is illustrated by figure 8, which shows the projection in the
plane (zOy) of the cascade geometry : that gives the circle C (projection of the helix) and the line A
(projection of the 3-D line). M is one of the 2 intersection points (always in 2-D ; in 3-D, the helix and

14

VOFinder and XiFinder 4 - Structure of the Fortran and C++ codes

the line almost never intersect), C' is the center of the circle, R its radius, and A is the projection of what
is called the origin of the helix (it’s most often the first hit point, or more exactly the point of the helix
that is closest to the first hit, since the helix is a fit). ¥ is the angle between the z axis and the tangent
to the circle in A. For lack of imagination, I'll keep the same names for the non-projected objects later
i-) (i.e. C for the helix, A for the VO line and A for the origin (not its projection) of the helix).

F1G. 8 : Projection of the cascade geometry in the 2-D plane (zOy).

The first part of the code that is run is the former subroutine update_track_param. Its role
is simply to move the orgin of the helix from its former position A to its new position M (actually, the
point of the helix that overlaps with M when projected to the (xOy) plane).

Here is a list of the various variables in this area of the code :
— — —=
axb : CA- W, where W is the vector such as | @|| = |CM| and (CM, W) = —

—
arg : sin(CA,CM)

e ds : curvilinear length on the circle between A and M

[}
SIE]

e dz: zpyr — 24
And what follows is how to do the link between the code and the mathematical formulas :
In the code, calling zi and yi the coordinates of the origin :
axb = (xi-xc) (yOut-yc) - (yi-yc) (xOut-xc)

CT)‘l: Ty —To CM;: Ty — Lo i Yu — Yo
Ys — Yo Yu — Yo —(zy —7¢)

—
So CA-w = (z, — xC)(yM - yc) —(ys — yC‘)(wM - xc) = axb.
Now, let’s try to find what is this axb= CA - W

15

VOFinder and XiFinder 4 - Structure of the Fortran and C++ codes

—
we know that ||| = |CM]], so :

CA- = ||CA|l- | B cos(CA,)
| 0

= |CA||- |CM | cos(CA, CM) + (CM, W)
= R?cos((CA,CM) — %)
= R? sin(CT)él, C—J\)l)

Therefore, since rsq = R?, we obtain arg = axb/rsq = sin(CTZl, CT/I)

ds is then defined as the angle (arcsin(arg)) multiplied by R, i.e. it is the curvilinear length on the circle
from A to M.

And then, from the definition of the dip angle!, we obtain that dz = ds.tan(dipAngle) is zy — 24
(considering this time A and M as the points on the helix instead of on the circle).

At the end of the former subroutine update track param, a helix called bachGeom2 is booked
with the same parameters than the original bachelor helix taken from the track container, bachGeom,
except for the origin that has been moved from A to M, and the angle ¥ that obviously changes when
the origin moves (see F1G. 8).

The next piece of code is the former subroutine track_mom, which just books the momentum
of the bachelor taken in M in the variable xOrig (which contained the 3-D position of M a couple of
code-lines before : since both usages don’t overlap, the same StThreeVector can be used for both of
them).

The next part of the code is the most difficult one to understand. It wasn’t a subroutine in
the Fortran code : that was part of the exiam function. Here is a list of the various variables in this
area of the code :

e pBach : normalised momentum of the bachelor in M (so it’s rather the (normalised) direction of
the tangent to the helix in M)
dvOdotdb : cos(dpV0, pBach)

diffc : J\W , calling V' the point where the V0O decays
denom : cos2(dp—\m‘,plTac1>1) -1

s2 : ehm... well... see the explanations below !

valid : relative error due to the linearisation

So let’s call V' the position of the VO vertex, i.e. the point where the VO decays. As described p. 14, we
now linearise the helix, i.e. we assume that the helix can be merged with its tangent in M (in 3-D). So
an approximation of the point where the distance between the helix and the VO line is the smallest is
the point where the distance between the tangent to the helix and the VO line is the smallest.

Let D be the tangent to the helix in M, A being the VO line, and let H; (resp. Hj) be the
point on A (resp. on D) where the distance to D (resp. to A) is the smallest. A 3-D illustration with
those points can be seen on FiG. 9.

Calling @ the vector that drives A (i.e. ¥ = dp—W‘) and U the vector that drives D (i.e.
v = pBach), we can write Hy and Hj as :

H=V+kd Hy =M+ kW
With the definition of H; and H, above, we can write that we search :

(HlEA,HQED) / HiHy1lA and HHy LD (2)

!For a detailed note about the helices’ parameters, see the appendix A of the Star Class Library documentation.

16

VOFinder and XiFinder 4 - Structure of the Fortran and C++ codes

o (HieAH,eD) | HiHy @ =HH 7 =0 (3)

Given that 5

H H,

%j@?—V—hﬁ
=VM+kW — ki
= —diffc+ k)g? — k17

we can re-write the system (3) as

HH, 0 = —diffe- T + koW -0 — by 0 -0
MHy ¥ = —diffe- T+ k¥ - -k @ -7

0
0

which can also be written as

—diffc- U + kycos(V, W) — k1 =0
—diffc- U 4+ ky — Ky cos(d, V) =0

because ||| = || 7| = 1.

F1G. 9: 8-D illustration of lines and points’ names introduced in the text. The V0 is in red, the projection
of the helix in the bending plane is in blue, and the tangent to this helix is in green.

Solving this system, we obtain :

—aif£e-(7 cos(7,7)-0)
N cos2(W,7)—1

difie-(w cos(W, V)~)
N cos2(d, 7)1

17

VOFinder and XiFinder 4 - Structure of the Fortran and C++ codes

In the code, s2 is calculated as :
s2 = (dpV0.X dvOdotdb - pBach.X) diffc.X + (dpVO.Y dvOdotdb - pBach.Y) diffc.Y +
+ (dpV0.Z dvOdotdb - pBach.Z) diffc.Z;
s2 = s2/denom;
which can be written as® :
(dpv0 cos(, /) —pBach)-diffc
2=
cos2(d,v)—1
m-(7c05(7,7)—7)

cos?(d,7)—1

= ko

So 2 is the 3-D algebraic distance M Hs between M and Hs, the point of D that is closest to A.
Then, valid is calculated as ‘32\/pBach.X2 + pBach.YQ‘, i.e. it’s the distance in the (zOy)

plane between M and H,, as illustrated by figure 10. The value valid itself is not very helpful to
determine if the linearisation is a good approximation or not. The value that has to be looked at is
actually the distance between Ho and the circle in the 2-D plane, which is called d in figure 10.

But d actually depends explicitely on valid, which means that an initial requirement on d can
be transformed into a requirement on valid. This allows not to calculate d and saves some calculation
time — at least it’s the only reason I’ve found that would explain why the authors of the code have chosen
to test valid rather than d ! The relation between d and valid is :

d =+ R?+valid2 — R

- %: \/1+ (va;id)Q » n

There are 2 conditions on %. Let’s call these two values valid; and valide, with valid; <
validy. The original algorithm (it may be changed in the mid-future) throws away any Xi candidate for
which valid > wvalids, and keeps all the other ones. But if valid € [valid;;valids], then another part
of the algorithm, which is described in the next paragraph, is run. It consists in improving the quality
of the linearisation by linearising the helix at another point. This improvement is tried at most 3 times.
Basically, this means that a linearisation that gives valid > walids means that it’s hopelessly bad ;
when valid < valid; it means that the linearisation is good enough and doesn’t need to be improved ;
and when valid € [valid;;valids], the linearisation is improved but it actually doesn’t matter if the
criterium valid < walid; is not reached : the candidate is kept anyway. According to the tests, only
a very few proportion of the candidates need 3 passes in the loop?, so requiring more than 3 passes is
indeed not necessary.

This table shows the numerical values of valid; and valids 0.001 R < valid < 0.02 R
used in the code (first line) and their equivalent for the more 51077 R< d <2107*R
interesting variable %, calculated with (4). 0.0005 % < 4 <0.02%

So when valid € [valid;;valids], here is the piece of code that is run :

!Given that dvOdotdb = m - pBach = cos(dpV0, pBach). Thus denom = COSQ(CW, pBach) — 1 = cos®(W, ¥) — 1.

*Result obtained over 1 Au-Au 200 GeV central event : over 73 269 bachelors, neglecting those which have only 1
intersection point, 45 500 have 2 intersection points, i.e. 62 % of them (and therefore 38 % have no intersection points).
Among the 118 194 dca calculations of those 62 %, 77.0 % of them don’t need a better linearisation, 21.7 % need to go once
in the loop, 0.8 % need to go twice in the loop, and 0.5 % go 3 times in the loop (this latter percentage, unike the former
ones, is the number of candidates that need only 3 passes added to the number of candidates that would need more).

18

VOFinder and XiFinder 4 - Structure of the Fortran and C++ codes

e Former subroutine evO_project_track : calculates the coordinates (in the (zOy) plane) of the
point M’ defined as the intersection of the circle C and the line (CHj) (see F1G. 10)

e Former subroutine update track param : moves the origin of the helix from M to M’ (as previ-
ously done from A to M)

e Former subroutine track mom : calculates the momentum of the bachelor in M’ (as previously
done in M)

e Block that calculates s2 and valid : calculates a new s2 and valid, whose value will be checked
to see if one more pass in this loop is necessary

valid

F1G. 10 : 2-D plane evaluation of the quality of the approximation made by linearising the helix.

The 3 last blocks are exactly the same as those already described above, so I'll only describe
the former subroutine evO_project track : the list below is made of the variables that are used in this
area of the code :

e batv : 3-D coordinates of Hy

e dtmp : T, — Ty,

® atmp : Y, — Yy,

e ctmp : slope of the line (CHy)

® VY Yy — Yo

®zz:xT ,— I,

e xAns : temporary variable, actually equal to xOut
e yAns : temporary variable, actually equal to yOut
e x0ut : z , (contained z,, before)

e yOut : y,, (contained y,, before)

The calculation of (z,,,y,) is simple : since ctmp = zg:% is the inverse of the slope of (CHs) the
Hy

equation of (CHy) is :

1
(CHy) :y = ctmp(”” —To) +Yg

and therefore, setting ' =z, —z, and 9y = y,, —y,, M’ is such as :

{ y, = (ctlmp) ‘TI

:L_IQ + y/2 — RZ

19

VOFinder and XiFinder 4 - Structure of the Fortran and C++ codes

Solving this system gives :

yl — :*: R
4/ 1+ctmp?
z' = ctmp - /'
2’ and 9 are respectively zz and yy in the code, and the “signus dilemma” is solved by the if-loop on
the sign of atmp.

And here is eventually the list of the variables used at the end of the code :
e vOatv : 3-D coordinates of H;

e sl : see the explanations below and page 16
e x0rig: momentum of the bachelor at Hs (be careful : at other places of the code, xOrig actually
stores the origin of the bachelor’s helix)

— 2 . . .
e dca: d%h o = HvOatv — bath : it’s the (squared) approximated distance of closest approach

between the Lambda and the bachelor. Keeping the squared value and taking the root only at
the moment of storing the value avoids time-consuming square-root calculations before all the
final cuts

e xpp : position of the Xi decay point : it’s the middle of [Hy Hs]

: vOatv—batv
, 1.e. I E—

e rv : the Xi decay length (prp - vaxH), used only in the former versions of the code (and in

Fortran). Now, the cut on the decay length is done “on the fly”

e pXi : momentum of the reconstructed Xi : py, = py. + PBach, H;

e check : used only in Fortran and in the former versions of the C++ code : contains first H;V - p—Vg
T —— — :
((xVO - vOatv) . pV0), and then PvzXivtz-p, ((xpp - xPvx) . pX1) to check that the VO points
away from the Xi vertex and the Xi points away from the primary vertex
e pper : p; Armanteros of the Xi
e globHelix : temporary StHelix booked with temporary variables (their name end in _tmp), used
to calculate bxi with StEvent functions

e bxi : distance of closest approach between the Xi and the primary vertex
At the end of the while-loop, the candidates for which valid > walids are simply thrown

away, and all the other ones are kept, even if valid > walid;. The value of s2 calculated during the last
loop is kept, and s1 (which is the k; of equation (2) (p. 16) and of the following ones) is calculated as

, _ —diffc- (pBach x dvodotdb — dpv6) —diffe- (T cos(d, V) —)

dvOdotdb? — 1 cos2 (W, 7) — 1

Then, the 3-D coordinates of H; are calculated and stored in vOatv, just like the coordinates of Hy are

=k

S

stored in batv. Once this is done, we check that I—ﬁ} goes roughly in the same direction as p_VO), ie.
that the VO points away from the Xi vertex newly found. This was formerly done via the variable check,
that is exactly Iﬁ . p—vg , but is now done “on the fly”.

If check is positive, it means that the VO points to the opposite direction than where the Xi
vertex is, and the rest of the algorithm — run only in that case — can be roughly summed up as something
that looks like this for the latest versions of the code :

Calculate some cut variables

if (cuts are not OK) continue

pXi = pV0 + x0rig

if (Xi doesn’t point away from primary vertex) continue
Calculate p; Armanteros, cut on it

Calculate signed dcaXiToPrimaryVertex, cut on it

Store the candidate

20

VOFinder and XiFinder 4 - Structure of the Fortran and C++ codes

and like that for the former versions of the code as well as for the Fortran program :

-
dca = |v0atv — batv” // dca = H{Hy
xpp = Y0atv-batv // xpp = 3-D coordinates of the middle of [H; Hy]
v = prp — vaxH // rv = Xi decay length

if (cuts are OK)

pXi = pVO + x0rig // gﬁ D7 3

= pVO +pBach,H2

check = (xpp - xPvx) . pXi // Check that PvzXivtz - > 0, i.e. that the
if (check > 0) // reconstructed Xi points away from the Pvx

| iflag=0 if the dcaXiToPrimaryVertex (cut) is OK
if (iflag=0)
Calculates the kinematic variables
Calculate unsigned dcaXiToPrimaryVertex, cut on it
Store the candidate

4.4.4 Detailed algorithm and cuts

The detailed algorithm is actually explained in the section 4.4.3 concerning the calculation of the dca,
p- 14. Yet, in the latter paragraph, no overview of the algorithm is given and the cuts are not listed.
This is the purpose of this short paragraph, and is summed up in FiG. 11.

Prepare things via the VOFinder

Loop over VO vertices

Get event- and V0-wise information

CUT on the (false) VO decay length (distance to primary)

Prepare rotating variables

Calculates Lambda invariant mass ; decide if A or A

CUT on A invariant mass

Prepare like-sign variable (change charge)

Loop over global tracks

If track has wrong charge : next

Select TPT vs ITTF tracks

If track already used in the V0 : next

Determine Xi’s detector 1D

Find DCA between V0’s straight line and track’s helix
(Implies CUT on number of intersection points

and CUT on validity of linearisation)

cuUT if VO doesn’t point away from Xi vertex

CUT on dca between V0 and bachelor

CUT on Xi decay length

CUT if Xi doesn’t point away from primary vertex

CUT on p; Armanteros

CUT on dcaXiToPrimaryVertex

Fill an StXiVertex

Store it

21

VOFinder and XiFinder 6 - Detectors

Fi1G. 11 : Cuts and algorithm of the XiFinder.

A short comment : variable charge is the sign of the bachelor, so when no like-sign is required,
charge is also the sign of the Xi : charge = —1 for Z and 2, +1 for Z and Q.

As for the VOFinder, a cut has been introduced compared to the Fortran version, on Feb 5th
2004 : the cut on the p; Armanteros. It removes 19 % of the candidates (all background), so this cut
used with the cut on the number of hits of the bachelor’s track! remove 34 % of the background.

5 Magnetic field

The magnetic field is calculated from the first track stored in the track table, in StVOFinderMaker: :-
Prepare (). Its sign is simply taken from the charge and the helicity :

sgn(B) = —sgn(charge) x sgn(helicity)

while the absolute value is calculated from the momentum of the track : an arbitrary value is given to
the magnetic field (1.107'° in the current version of the code) ; then, assuming this value for B, the
momentum of the track is calculated from its geometrical characteristics (curvature of the helix), by
using a function of StEvent. This value is compared to the actual momentum of this track, and the ratio
between both momenta simply gives the factor to apply to the arbitrary value given to B to get the real
magnetic field :
B=1101"
171) = actual momentum of the particle
]72) = momentum associated to the track assuming B
Actual B = B x ﬁ—;
The magnetic field algebraic value is stored in the member-variable Bfield. The value of
tesla is 1.10713, that of kilogauss is 1.107 .
If one wants to get the magnetic field value from gufld, it’s still possible : the lines mentionned
above need of course to be commented out, and 3 pieces of codes just need to be uncommented :
e 3 lines (include, extern, define) at the very beginning of VOFinder.cxx
e function InitRun in VOFinder.cxx and VOFinder.h

and Geant has to be instantiated in the macro that calls the VO/XiFinders (if you use the BFC : no
worry, it works right away).

6 Detectors

Each track has a detector ID, an integer that tells in which detectors this track has been seen. The
detector 1D of each track is stored in the table detId? (filled in StVOFinderMaker: :Prepare()).

The table below sums up the various states of this flag, for tracks that have a hit in the TPC
only, in the SVT only, or in both detectors.

Implemented in the VOFinder, although it concerns only the XiFinder. See § 4.3 p. 10 for more information.
2Not to be mixed up with table trkID, in which the keys of the tracks are stored.

22

VOFinder and XiFinder 6 - Detectors

detId | Hit(s) in TPC | Hit(s) in SVT
1 X
2 X
3 X X

Case 2 should not happen this days since the SVT doesn’t create tracks up to now, but this may become
possible, so the possibility for SVT-only tracks is kept. In this paragraph, “SVT” actually means “SVT
and/or SSD”.

The detector 1D of the VO and of the Xi are respectively stored in the member-variables
det_id_vO and det_id_xi. Both of them are equal to the higher of their 2 daughters’ detector ID. This
means that for example a Xi will have a detector ID of 3 whatever the number of its 3 daughters that
have at least 1 hit in the SVT (provided that at least one of them has a hit in the SVT).

6.1 Cut values

The cut values depend on various things :

e The collision system : of course, way looser cuts are needed for e.g. p-p than for Au-Au

e The detector ID : e.g. the position of a Xi vertex is better determined when the SVT is used

e For the V0s : the fact that they are primary or secondary ; the cut on the false decay length
(distance between the primary vertex and the VO decay point) is tighter for primary V0’s, because
we want them to come from the primary vertex.

The numerical values of the cuts can be found in several files that are stored in directory
StarDb/global/vertices/. There is one file per collision system and energy. Files for the VO cuts have
a name that begins by evOpar2, and those for the Xi cuts have a name that begins by ezipar.

A VO file has 2 times 3 sets of cuts. The first 3 sets are cuts used for all the V0s (primary and
secondary), and the last 3 sets are tighter cuts used only for the primary V0s. The 3 sets are for (in this
order) :

e Tracks that have hits only in the TPC
e Tracks that have hits only in the SVT
e Tracks that have hits in both the TPC and the SVT

A Xi file has only 3 sets of cuts, because all the Xis are primary. The 3 sets are also TPC-only cuts,
SVT-only cuts and TPC+SVT cuts.
Here is the composition of each set of cuts, for the V0’s (dca stands for distance of closest
approach) :
e dca : maximum value of the dca between the two daughter tracks ;
e dcav0 : maximum value of the dca between the VO and the primary vertex (impact parameter) ;
e dlen : minimum value of the VO false decay length (distance from the primary vertex to the
decay point) ;
e alpha max : maximum absolute value of @y, ;
e ptarm max : maximum value of p| gpm ;
e dcapnmin : minimum value of the dca between the daughter tracks and the primary vertex
(impact parameter) ;
e iflag: not used ;
e n_point : minimum number of points on the track.

And here is that for the Xi’s :
e use_pid : not used ;

23

VOFinder and XiFinder 7 - Rotating and like-sign

dca max : maximum value of the dca between the two daughters ;
bxi max : maximum value of the dca between the Xi and the primary vertex (impact parameter) ;
rv_xi : minimum value of the Xi decay length ;

rv_v0 : minimum value of the VO false decay length (distance from the primary vertex to the
decay point) ;

dmass : cut the V0 invariant mass : keep a window of + dmass around the mass of the Lambda ;
e bpn_v0 : minimum value of the dca between the pion daughter of the V0 and the primary vertex

(impact parameter) ;
e pchisq : not used.

In the code, the Xi cut values are stored in the member-variable parsXi, and the VO cut values
are stored in pars and pars2, respectively for the primary V0’s and for all (primary and secondary) the
V0’s, both being member-variables.

6.2 Using the SVT hits

To be written.

7 Rotating and like-sign

These options have been implemented for analysis purpose, and have been thought to be a plug-and-play
code, avoiding private dirty versions ;-) and waste of time for those who wish to use such methods and
would have had to code them themselves.

7.1 Like-sign analysis

For a decay channel A — B + C, the like-sign method consists in reconstructing A by associating B
and C rather than B and C. Its name comes from the usage in decays such as A — p(t) 4 7~ (using
like-sign, p would be combined with 7T, a particle that has the same sign), but let’s extend this usage
to the =-like decays, e.g. 2= — A? + 7. Since the A is neutral, associating a A with a 7+ instead of
a m isn’t doing like-sign strictly speaking, but I will call this like that.

Like-sign analysis has been implemented only in the XiFinder, not in the VOFinder. The
reason why is that one of the Xi decay is neutral, and combining a straight line with a positive helix
rather than a negative one doesn’t change anything. But things are different for a VO decay : in such a
case, “like-singing” means combining 2 helices of same charge, instead of opposite charge, and, although
I’ve never checked that or looked at distributions made by somebody else, I'd bet that things like the
combinatoric, the dca distribution, etc... are changed, which means that the background built with this
method would be different than the real background, because the same cuts are applied to distributions
that don’t have the same shape. So in the case of the V0 decays, the rotating method is probably safer
than like-sign.

As said previously, the like-sign method in the XiFinder consists in finding candidates built
with one of the daughters being the antiparticle of the expected daughter. So we find and store A + 7™
(resp. KT for the) and A + 7~ (resp. K™).

24

VOFinder and XiFinder 7 - Rotating and like-sign

In the post-reconstruction analysis codes, one should be very careful when using like-signed
candidates, because the charge of a particle is determined with the charge of the bachelor!. So what
your code will assume is an Q™ is a particle made of a m— and a A instead of a A. So when applying
the cuts, all the functions that make a hypothesis on the particle identification should be changed (e.g.
massLambda() — massAntiLambda()).

Deciding whether like-sign should or shouldn’t be used is done by using the function StVOFin-
derMaker: :SetLikesignUsage. The 2 possible values are :

e kLikesignUseStandard = 0 : the standard reconstruction with no like-sign is performed,
e kLikesignUseLikesign = 2 : the like-sign reconstruction is done.

Section 8 p.27 explains how to use these functions.
In the code, like-sign analysis is done in a very easy way :

e When checking that-and-whether the V0 is a A or a A, -1 is stored in variable charge if it’s a A
(i.e. a 2 or O candidate will be built), +1 ifit’sa A (i.e. a = or Q' candidate will be built).

e Then, the variable charge is transformed according to this formula :
charge=-(useLikesign-1)*charge; :
if no like-sign has been asked, the variable is unchanged, whereas if like-sign has been required,
the sign of charge is changed.

e The XiFinder eventually loops over tracks whose charge is such as charge X track.charge > 0.

And that’s all !

7.2 Rotating analysis

For a decay channel A — B + C, the rotating method consists in reconstructing A by associating B
with C’ rather than C, where C’ is the track of a C-like particle whose parameters have been changed.
The various possible changes are :
e Rotating : a track is rotated by 180° around the axis that is parallel to (Oz) and that goes
through the primary vertex,
e Symmetry : a track is transformed into its symmetric with respect to the (zPy) plane, P being
the primary vertex,
e Rotating 4+ symmetry : doing both transformations together, which is equivalent to taking the
symmetric of the track with respect to the primary vertex.

Rotating — which will refer from now to all 3 methods described in the previous paragraph —
hasn’t been implemented in the VOFinder yet, but will be some day (I haven’t received any request yet
=))

Deciding whether one of these methods should be used and which one is done by using the
function StVOFinderMaker::SetRotatingUsage. The usage is explained in section 8 p. 27. There are
4 possible values, which are :

e kRotatingUseStandard = 0 : the standard reconstruction with no rotating is performed,

e kRotatingUseRotating = 1 : the bachelor tracks are rotated,

e kRotatingUseSymmetry = 2 : the bachelor tracks are “symmetrised” with respect to the plane
that is parallel to the bending plane and goes through the primary vertex,

kRotatingUseRotatingAndSymmetry = 3 : the bachelor tracks are “symmetrised” with respect
to the primary vertex.

'This can be found in StRoot/StStrangeMuDstMaker/StXiMuDst.cc, in function StXiMuDst::FillXi(StXiVertexx
xiVertex).

25

VOFinder and XiFinder 7 - Rotating and like-sign

Unlike with like-sign, nothing has to be changed in the post-reconstruction analysis codes.

Here is a mathematical description of how the various rotating-like methods are performed
(see footnote 1 p. 16 about the helices’ parameters) : the table below shows how the various helix
parameters are modified depending on the method used.

‘ Original helix ‘ Rotating ‘ Symmetry ‘ Both ‘
Charge c c c c
Angle g U+ v U+ 7
Curvature K K K K
Dip angle A A —A —A
X origin Zo | 2,5, — To To 2Tp,, = To
Y origin Yo | 2Yp,. — Yo Yo 2Yp,e — Y0
7 origin 20 20 22py, — 20 | 2Zpy, — 20
Helicity h h h h
X momentum p, —Dx Pz —Pz
Y momentum p, —Py Py Py
7 momentum p, Dy —Pz 2

In the code, all rotating methods calculations are achieved in one shot, thanks to the pre-
definition of a couple of interesting variables that are described below. In the code, once the bachelor
helix is moved, nothing else is changed by the use of a rotating-like method. So what is done is simply
the booking (and then usage) of a StHelixModel called bachGeom from both the initial parameters of
the helix and the “interesting variables”, whose value is set at the beginning of the XiFinder, before the
loop on the bachelor tracks.

Here is how the helix parameters are modified before their storage in bachGeom :

charge — charge

helicity — helicity

curvature — curvature

psi — psi + cstPsi

dipAngle — epsDipAngle x dipAngle

origin.X — c¢stOrigin.X + epsOrigin.X X origin.X
origin.Y — c¢stOrigin.Y + epsOrigin.Y X origin.Y
origin.Z — c¢stOrigin.Z + epsOrigin.Z X origin.Z
momentum.X — epsMomentum.X X momentum.X
momentum.Y — epsMomentum.Y X momentum.Y
momentum.Z — epsMomentum.Z X momentum.Z

The “interesting variables” are written in bold, and the values they are given are listed in the table
below (an empty space means that the value is the same as for “no rotating”).

The combination of the values in this table and the transformations listed in the previous
paragraph give the mathematical transformations listed in the table p. 26. This avoids a check of the
rotating choice by an if-loop inside the for-loop on the tracks, and thus time-consuming jumps in the
code.

26

VOFinder and XiFinder 8 - How to use the VO/XiFinder

‘ Variable No rotating ‘ Rotating ‘ Symmetry ‘ Both ‘
cstPsi 0 T T
epsDipAngle +1 -1 -1
cstOrigin.X 0 2z, . 2z, .
cstOrigin.Y 0 2Yp0s 2Yp0s
cstOrigin.Z 0 225, 2zp,,
epsOrigin.X +1 -1 -1
epsOrigin.Y +1 -1 -1
epsOrigin.Z +1 -1 -1
epsMomentum. X +1 -1 -1
epsMomentum.Y +1 -1 -1
epsMomentum. Z +1 -1 -1

8 How to use the VO/XiFinder

Because the V0/XiFinders read StEvent, they are able to take various input files :
e dagq files : it’s then run in the BFC,
e cvent.root files : it’s run stand-alone,
o MuDst.root files : it’s also run stand-alone, and converts the muDst into an StEvent.
In all the cases, you have to add in your macro :
gSystem->Load ("StSecondaryVertexMaker") ;

8.1 Running in the BFC

BFC options have been set up for the chain to include the secondary vertices makers ; their names and
actions are summed up in the table F1g. 12.

The important thing to note is that you should NOT use options “V02” and “Xi2” at the
same time (or “V0svt” and “Xisvt”), because 2 identical makers would be instantiated. Just don’t forget
that if you run with option “X%2”, both the V0’s and the Xi’s will be found and stored.

Yet, you can use e.g. options “V0” and “V02” at the same time, so as to get both the Fortran
and the C++ VO0’s.

Fortran C++ SVT
| Name | Maker run Kinks ‘ VO0s ‘ Xis | Kinks ‘ VO0s ‘ Xis | usage
Kink StKinkMaker X
Vo StVOMaker X
Xi StXiMaker X
Kink2 StKinkMaker X
V02 | StVOFinderMaker X
Xi2 StXiFinderMaker X X
VOsvt | StVOFinderMaker X X
Xisvt | StXiFinderMaker X X X

F1G. 12 : BFC options dealing with strangeness reconstruction.

27

VOFinder and XiFinder 8 - How to use the VO/XiFinder

Notice that the Fortran makers (i.e. the C++ makers that call the Fortran PAMs) are located
in StRoot/St_dst Maker/, while the C++ makers are in StRoot/StSecondaryVertexMaker/.

More details can be found here :
www.star.bnl.gov/STAR/comp/pkg/dev/StRoot/StBFChain/doc/

If you want to run your personal VO/XiFinder in the BFC, you just have to copy bfc.C
in your StRoot/macros/, and change the part mentionned as “Insert your maker” so as to have the
StVO0/XiFinderMaker be run.

8.2 Running stand-alone

If you want to write a strangeness muDst while reading event.root files, you can copy makeStrange-
MuDst.C in your StRoot/macros/, add the instantiation of a StV0/XiFinderMaker in function run(),
between the instantiation of St_db_Maker and that of StStrangeMuDstMaker ; check that the time stamp
is OK (for the cuts values), and that’s all. If you read MuDst.root files, the macro is only very slightly
different, an example of it will be put in StRoot/StSecondaryVertexMaker/ soon. One more necessary
thing to do if your input files are MuDst.root files : the EventModelUsage option has to be set to 1 (see
§ 8.3.4).

8.3 Modifying the default parameters

When running in the BFC, I don’t know how the default parameters can be changed. I usually have my
private StXiFinderMaker version with modified default options in the constructor. If somebody knows,
feel free to re-write this paragraph !

When running as a stand-alone maker, it’s very easy : you just need to call the functions that
are described in the table F1Gc. 3 8, whose name begins by Set of course, with an integer argument. You
can find the suitable values of these arguments in the code of StVOFinderMaker .h.

8.3.1 LikesignUsage and RotatingUsage
LikesignUsage and RotatingUsage are described in details in § 7.

8.3.2 TrackerUsage

TrackerUsage gives the possibility of choosing to use TPT and/or ITTF tracks for the VO and cascade
reconstruction. It has 3 possible values :

e kTrackerUseTPT = 0 : only TPT tracks are used,

o kTrackerUseITTF = 1 : only ITTF tracks are used,

o kTrackerUseBOTH = 2 : all the tracks are used.

When the value of the tracker usage is set to kTrackerUseBOTH, all the tracks are used but they are never
mixed together, i.e. a VO will have either 2 TPT daughters, or 2 ITTF daughters, never one daughter
of each type. This allows to define TPT and ITTF V0’s and Xi’s. They can be differentiated afterwards
by the fact that the TPT V0’s and Xi’s have a positive distance of closest approach between the V0
daughters, while this value is negative for the ITTF V0’s and Xi’s (so be careful in your analysis code...).

Knowing if a track is a TPT track or an ITTF track is done by quering StTrack->fittingMe-
thod (), and checking if it’s equal to a specific value that signs the ITTF and TPT tracks. These values
are stored in the member-variables ITTFflag and TPTflag, and are defined in pams/global/inc/, in
files StTrackMethod.h and StTrackDefinitions.h.

28

VOFinder and XiFinder 8 - How to use the VO/XiFinder

8.3.3 SVTUsage

To be written.

8.3.4 EventModelUsage

This option switches between an StEvent-like input and a MuDst-like input. If the input is a microDst,
it’s first transformed into an StEvent object, before running the code just as if the input was StEvent-like
(case of the daq and event.root files). It has therefore 2 possible values :

e kUseStEvent = 0 : takes an StEvent as input,

e kUseMuDst = 1 : takes a muDst as input.

8.3.5 LanguageUsage

Actually, 3 options belong to this category : LanguageUsage, VOLanguageUsage, and XiLanguageUsage.
Only 2 of them are used in the code : VOLanguageUsage and XiLanguageUsage ; LanguageUsage is used
for simple configurations (those that occur most often) by overwriting the 2 other options.

Those options have initially been set only for tests purposes (comparison between the Fortran
and C++ codes), but may be used for other aims ; it’s used for example when the SVT hits are used in
V0/Xi finding.

The thing to know is that the Fortran V0’s and Xi’s will always pre-exist the C++ ones,
because they are found when things are still table-like (as opposed to StEvent-like). So the possibilities
are : keeping or not the Fortran candidates, and finding or not the C++ candidates. Because of this
pre-existence, the Xi’s found by the C++ code can be built with either a Fortran VO (if they are kept)
or a C++ V0.

Here are the various values taken by LanguageUsage :

e kLanguageUseSpecial =0 = 000° : used when special VOLanguageUsage and XiLanguageUsage
options have to be set (no overwriting of these options)

e kLanguageUseOldRun = 1 = 001° : runs an “old run”, i.e. stores only the Fortran V0’s and Xi’s

e kLanguageUseRun = 2 = 010 : runs a normal Tun, i.e. stores only the C++ V0’s and Xi’s (made
of C++ V0’s of course)

e kLanguageUseTestVOFinder =5 = T01° : runs a VOFinder test, i.e. stores the Fortran and C++
V0’s (and the Fortran Xi’s)

e kLanguageUseTestXiFinder = 6 = T10” : runs a XiFinder test, i.e. stores the Fortran Xi’s and
the C++ Xi’s made of Fortran V0’s (and stores the Fortran V0’s)

e kLanguageUseTestBothFinders =7 = TI1” : runs a test of both finders sequentially, i.e. stores
the Fortran Xi’s and the C++ Xis made of C++ V0’s, as well as the Fortran and C++ VO0’s.

V0OLanguageUsage is a 2-digit binary number. Noting this number zy, digit y tells if the
Fortran V0’s have to be kept or not, and digit z tells if the C++ V0’s have to be found or not. A value
of 1 for a considered digit means that the configuration that it represents will be stored in the final file.
So here are the possible values and what will be found on the output file :

e kVOLanguageUseFortran =1 = 01 : only Fortran VO0’s,
e kVOLanguageUseCpp = 2 = 10° only C++ VO0’s,
e kVOLanguageUseBoth = 3 = T1% : both Fortran and C++ VO0’s.

XiLanguageUsage is pretty similar to VOLanguageUsage, except that it’s a 3-digit binary
number zyz. z is for the Fortran Xi’s, y for the C++ Xi’s made of Fortran V0’s, and x for the C++
Xi’s made of C++ VO0’s. The rules are the same :

29

VOFinder and XiFinder 8 - How to use the VO/XiFinder

e kXiLanguageUseFortran = 1 = 001~ : only Fortran Xi’s,
e kXiLanguageUseCppOnFortranV0 = 2 = 010 : only C++ Xi’s made of Fortran V0’s,
e kXiLanguageUseCppOnCppV0 = 4 = 100° : only C++ Xi’s made of C++ VO’s,
e kXilanguageUseFortranAndCppOnFortranV0 = 3 = 011 : Fortran Xi’s and C++ Xi’s made of
Fortran V0’s,
e kXilanguageUseFortranAndCppOnCppV0 =5 = T01° : Fortran Xi’s and C++ Xi’s made of C-++
VO0’s,
e kXilLanguageUseBothCpp = 6 = T10° : all C++ Xi’s (i.e. made of Fortran and or C++ V0’s),
e kXilLanguageUseAll =7 = TI1° : all Xi’s (Fortran, and all C++ Xi’s).
Tables F1G. 13 and 14 are the Karnaugh maps' that give the formula giving VOLanguage Usage
knowing LanguageUsage (this is only in the case of LanguageUsage being different than kLanguageUse-
Special of course). xy are the digits of VOLanguageUsage, abc are those of LanguageUsage.

T bc adc be
00| 01|10 |11 00 |01]10]11
a 0/ X|0]|1]|X a 010 11]0
11 X|1]01|1 110 11]01|1

Fi1G. 13 : Karnaugh map giving digit x of VOLanguageUsage.

Y be a+c be
00| 01|10 |11 00| 01|10 |11
a 0 X|1]0]|X a 001|001
1| X |1 (11 1|1 111

Fi1ac. 14 : Karnaugh map giving digit y of VOLanguageUsage.

Tables F1G. 15, 16 and 17 are the Karnaugh maps? that give the formula giving XiLan-
guageUsage knowing LanguageUsage (as for VOLanguageUsage, this is only in the case of LanguageUsage
being different than kLanguageUseSpecial). zyz are the digits of XiLanguageUsage, abc are those of Lan-
guageUsage.

z bc b-(a®c) bc
00 | 01|10]| 11 00 | 01|10]| 11
a 0(X|]0]|1|X a 0 0101
11 X010 1 1 0010 1

Fi1G. 15 : Karnaugh map giving digit = of XiLanguageUsage.

Y be abe bc
0001 |10| 11 0001|1011

X|10]0]|X a 00| 0|00
1/ X]0111]0 1100|110

a

Fi1G. 16 : Karnaugh map giving digit y of XiLanguageUsage.

!Except that I haven’t used the Gray binary code for ab, but the functions are simple here.
2Cf. previous footnote.

30

VOFinder and XiFinder 8 - How to use the VO/XiFinder

z bc a-+tc bc
00| 01|10 |11 00 | 01]10 11
a 0/ X|1]0]|X a 0| 0|1 |01
1] X 1 1 1 111 1 1 1

Fi1G. 17 : Karnaugh map giving digit z of XiLanguageUsage.
The formulas can be deduced from those Karnaugh maps :

VOLanguageUsage = 2(a @ ¢) + (a + ¢)
XiLanguageUsage = 4 (b(a & c)) + 2(abc) + (a + ¢)

and their result is shown in the 3 first columns of the tables F1g. 18 and 19, page 32. The first column
is LanguageUsage, and the 2 others are VOLanguageUsage and XiLanguageUsage as binary numbers.

As said above, one can chose his own values of VOLanguageUsage and XiLanguageUsage,
independantly of LanguageUsage (whose value must then be set to kLanguageUseSpecial = 0, so as to
not overwrite the private choice of VOLanguageUsage and XiLanguageUsage). Not all the combinations
are authorised though, because some of them are either meaningless, or too difficult to implement for
the use that they would have. A total of 11 combinations are possible.

If all the VO0’s (i.e. Fortran and C++) are stored, then you can chose any XiLanguageUsage
option.

If you don’t store the Fortran V0’s, then the only XiLanguageUsage option allowed is storing
the C++ Xi’s made of C++4+ VO0’s. Any other value set will cause the code to print a warning message
and overwrite the option chosen by kXiLanguageUseCppOnCppVO.

If you don’t store the C++4 VO0’s, the 3 authorised values for XiLanguageUsage are those
which don’t require to store the C++ Xi’s made of C++ V0’s (namely kXilLanguageUseFortran,
kXiLanguageUseCppOnFortranV0 and kXiLanguageUseFortranAndCppOnFortranV0). Any other choice
will lead to a warning printed by the code, and your choice will be overwritten by kXiLanguageUseFor-
tranAndCppOnFortranVO.

An important thing to mention is that the V0’s and Xi’s found by the C++ codes are flagged,
so as to differentiate them from the Fortran candidates that may be kept. Any V0 candidate found by the
(C++) VOFinder has a negative x2, and any Xi candidate found by the (C++) XiFinder has a negative
x?2, except for those which are made of a Fortran V0 (since code version 1.8 of StXiFinderMaker.cxx).

Let’s see now the effect of these options on container keeping/erasing. When only the VOFinder
is run, it’s quite simple :

o If the second digit (starting from the least significant bit) of VOLanguageUsage is 0, the VOFinder
is not run at all. As an effect, not C++ V0’s are found and the Fortran V0’s are kept.

o If the first digit of VOLanguageUsage is 0, the containers of Fortran V(0’s and Xi’s are erased,
and then the VOFinder is run.

For the XiFinder, things are a bit more complicated... Let’s call XiLanguageUsage zyz, and
VOLanguageUsage .y, : if z = 0, the initial container of Xis is erased (because z = 0 means that we
don’t want to keep the Fortran Xis). Then, if y = 1, a loop over the existing V0’s is done and method
UseVO (i.e. the XiFinder algorithm) is called for each of them. This is how the C++ Xi’s made of
Fortran VO0’s (the pre-existing ones) are made. And finally, if z = 1 and/or if z, = 1, the VOFinder
is called (the first case means we want C++ Xi’s made of C++ V0’s — so C++ V0’s have first to be
found —, the second one means that we want C++ VO0’s).

The existing container of Xi’s is actually not removed (even though z = 0) in one case : when
z = 1 and y, = 0. The only case when this actually happens is for (VOLanguageUsage,XiLanguageUsage)

31

VOFinder and XiFinder 8 - How to use the VO/XiFinder

= (10,100), and the reason for that is that in such a case, because z = 1, the VOFinder is called and the
container that we want to remove s removed in the VOFinder, as soon as y, = 0. The container can’t
be removed twice, so it’s removal is prevented in the XiFinder by requiring the condition z = 1 and
1y = 0. In the theory, we should also require — in order to remove the Xi container — that “z, = 1 and
yy = 0 is false”, because a call to the VOFinder is also made when x, = 1. Yet, this is not necessary in
practice, because the only possible case “z, = 1 and y, = 0” is (VOLanguageUsage,XiLanguageUsage)
= (10,100), that is already taken care of.

Then, at the beginning of function UseVO of the XiFinder, a test whether C++ Xi’s are
required to be found is done : if z = 0 and y = 0, it means that no C++ Xi’s are asked, and we exit of
the function with return code false, meaning that the V0 hasn’t been used to make a Xi.

The last test that is performed is also at the beginning of function UseV0 of the XiFinder on
concerns the difference between C++ Xi’s made of Fortran V0’s and C++ Xi’s made of C++ V0’s. Since
we want both of them when XiLanguageUsage equals 6 or 7 (respectively kXiLanguageUseBothCpp and
kXiLanguageUseAll), this test is run only for XiLanguageUsage < 6. It just exits from the function (also
with exit code false) when the x? of the VO is negative if y = 1 (the VO was a C++ one), and when the
x? of the VO is positive or null if z = 1 (the VO was a Fortran one).

I’ve explained this in a Fortran vs C++ framework for historical reasons, but of course one can
use these options to play with container keeping/erasing/filling for other purposes, i.e. not necessarily
Fortran candidates may be present in the pre-existing containers : these containers may be empty, or
may be filled with C++ candidates coming from a previous pass.

Options Maker is run Pre-existing V0’s || Pre-existing Xi’s

VO | Xi || VOFinder | XiFinder || Erased | Kept Erased | Kept

1|01 | 001 X X
01 | 010 X X X

6| 01 | 011 X X X

2| 10 | 100 X X X X

5| 11 | 001 X X X
11 | 010 X X X X
11 | 011 X X X X
11 | 100 X X X X

7111 | 101 X X X X
11 | 110 X X X X
11 | 111 X X X X

Fi1G. 18 : Effect of the available options on the makers and pre-existing candidates.

The table F1G. 18 sums up which algorithms are run / not run, and which containers are
kept / erased depending on the option choice. The first column gives the LanguageUsage option that
sets the equivalent pair of options (VOLanguageUsage,XiLanguageUsage). The next table, F1a. 19,
translates this in terms of what happens to the V0O and Xi containers : you can see whether they are
erased (it actually never happens), kept as is, appended or overwritten in function of the options set, or
you can on the contrary decide which options you have to use depending on the actions you want to be
taken on the containers.

32

VOFinder and XiFinder 9 - Tests

Options VO container Xi container

VO | Xi || Erase | Keep | Append | Overwrite || Erase | Keep | Append | Overwrite
1|01 | 001 X X

01 | 010 X X
6| 01 | 011 X X
2| 10 | 100 X X
51 11 | 001 X X

11 | 010 X X

11 | 011 X X

11 | 100 X X
7111 | 101 X X

11 | 110 X X

11 | 111 X X

Fi1Gc. 19 : Effect of the available options on the V0O and Xi containers.

8.4 Beware of the flags !

A couple of flags are set by the VO/XiFinders when finding the candidates. Those flags are melted in
the candidates’ variables. There are 4 flags :
e Tracker flag : ITTF vs TPT,
Finder flag : Fortran vs C++,
svT flags,
VO flag : primary vs secondary V0.

ITTF flag : for TPT candidates, the distance of closest approach between the VO daughters is
positive. For the ITTF candidates, it’s negative. This encoding is the same for the V0’s and for the Xi’s,
because an ITTF V0 can be combined only with an ITTF track to form a Xi, so a Xi is also flagged by
the sign of the dca between the V0 daughters.

Finder flag : it differentiates the Fortran and C++ V0/Xi candidates. The Fortran candidates
have a positive or null x? (X%/O for the V0, X%{i for the Xi), while the x? of the C++ candidates is set to a
negative value in the VOFinder (x%,) and XiFinder (x%;). Be careful : the Fortran’s x?’s are often equal
to zero, rather than strictly positive. An important additionnal note : since version 1.8, the XiFinder
does NOT set a negative X%(i when it’s making Xi’s out of Fortran V0’s : the X%(i can have any value,
positive as well as negative (it actually depends on the SVT usage for the considered condidate).

SvT flag : to be written.

VO flag : if the VO is primary, the distance of closest approach of the VO trajectory to the
primary vertex (impact parameter) is positive. If the V0 is not primary, then the dca between the VO
and the primary vertex is negative. Notice that a secondary VO could also be classified as primary ; the
condition for the flag to be set is not that the V0 is secondary, but that it is not primary. So the set of
the flagged V0’s is only a subset of the secondary VO0’s.

9 Tests

I have unfortunately no time to write this section in details. There are basically 3 types of tests : whether
the code runs and does find Xis, whether the variables inside the XiFinder have the same value in C++

33

VOFinder and XiFinder 9 - Tests

and in Fortran, and whether the number of Xis found and their distributions are similar.
In this paragraph, I’ll talk mainly about the XiFinder. The XiFinder algorithm is exactly the
same as the Fortran one, the VOFinder one is not.
The version of the code that has to be used for comparisons with the Fortran code is :
e StVOFinderMaker.cxx : version 1.17 without the causality cut introduced in version 1.9! (last
version for now is 1.18)
e StVOFinderMaker.h : version 1.7 (the last one for now)
e StXiFinderMaker.cxx : version 1.18 (last one for now is 1.19)
e StXiFinderMaker.h : version 1.2 (the last one for now)

In more recent versions of the Finders, new cuts have been introduced compared to Fortran (see § 4.3
p- 10 and § 4.4.4 p. 22 for more information).

9.1 Invariant mass peak

The code does run, in the production as well as stand-alone. After filtering the muDsts produced with
tight cuts, an invariant mass peak appears, that can be compared with the Fortran invariant mass peak.
This is shown in Fia. 20.

=&= 0.001GeV/bin Mass1Tot ‘ =&= 0.001GeV/bin | Mass1Tot
Entries 65566 Entries 65566
2 2
= H Mean 1.336 = Mean 1.336
g.OOO RMS 0.03633 g 4 RMS 0.04448
(@] (@]
* Underflow 0 Underflow 0
800 1{ Overflow 3.721e+04 Overflow 1.156

600

{
400 P
|

[
LI L L L I B L L B

200 4 it F ittt bt
HM#MMWWM“ fm,*h m“{wﬁﬁ M Ww W’ Ww 0
Bt L
T F |
ol bl v k™ v 1 v L e L L L Bl b e b e e b L
124 126 1.28 13 132 134 136 1.38 14 124 126 1.28 1.3 132 134 136 138 1.4
Mass (GeV/cz) Mass (Gevlcz)

F1a. 20 : Left plot : comparison of the XiFinders : Fortran invariant mass distribution in blue, C++
in red. Right plot : ratio Fortran/C++.

Details can be found here :
www.star.bnl.gov/protected/strange/faivre/utilities/xifindTest.html

9.2 Deep level tests

Unlike the 2 other series, the first series of tests that I’ve made have been done only on the XiFinder
(although I’ve made a VOTester, but only to test the final variables and which V0’s were found or not —
since the algorithm is different, deep level tests can’t be made on the VOFinder). Furthermore, they test
essentially... the background and not the signal, because of the so small number of signal Xi’s ! (And
technically : it was run in the BFC, so was very time- and disk-space-consuming, so only a few events
could be processed). It consisted in printing the value of several or all the variables in the XiFinder
algorithm, in Fortran and in C++, and comparing those values on a candidate-per-candidate basis.

1 This cut is labelled “Cut: check if the first point of either track is after vOvertex”.

34

VOFinder and XiFinder 9 - Tests

Roughly speaking, I've printed 1/10th of the final results, and those forms a 3-cm high stack
of paper sheets... So giving all the details is out of question ;-)

Since the Fortran maker and the C++ maker are run one after the other, the Xi vertices have
to be identified. The event is identified by the position of the primary vertex, then the V0 is identified by
the position of its vertex, and then the bachelor is identified with its momentum. This makes a unique
Xi in Fortran and in C++. The codes that I've called “testers” basically associate a Fortran Xi with
the corresponding C++ Xi (if it exists), and then plot some distributions showing the differences. More
details can be found in the talk that I gave during the strangeness workshop of November 2002 in UCLA,
which can be found here :
www.star.bnl.gov/protected/strange/faivre/talks/20021018/t1k2j2.html

I’ve also inserted bugs on purpose and checked what was the effect on the output plots I was
looking at : the effect has been in all 4 cases immediately visible.

According to the type of the variables used, the error due to digitalisation and binary rounding
of the floating-point numbers that we have to expect on the variables is :

6.10-% < 2% < 12107
M

All 304 XiFinder variables have been checked, and the results are definitely satisfactory. The
(very) few outliers were due to no value printed in the logfile, either in Fortran or in C++, for various
reasons ; so they are not caused by a bug in the code.

9.3 Global tests

This series of tests consists in forgetting about the candidate-by-candidate comparisons, and checking
that the distributions of various XiVertex variables ae similar between Fortran and C++, plus checking
that the number of candidates found is the same. The tests are described here :
www.star.bnl.gov/protected/strange/faivre/utilities/xifindTest.html

and all the plots of the distributions can be seen on the same webpage.

Those tests show that the distributions and number of candidates found by the Fortran
XiFinder and the C++ XiFinder are exactly similar when analysis cuts are applied, and almost ex-
actly similar (see the webpage for details) when no cuts are applied : the difference can’t be seen with
the eye, because it’s almost always below 1 ¢ of the statistical error bar.

Tests of the VOFinder show that some distributions are significantly different, but since the
algorithm is different it’s expected. The important thing is that when the invariant mass plots are
compared once the analysis cuts are applied, no difference is seen in the number of signal found in the
peak.

35

VOFinder and XiFinder 10 - To-do list

10 To-do list

There is no particular order and not everything is relevant/worth doing ;-)

fabs vs TMath::Abs.

TThreeVector vs double[3].

Write more about tests in the documentation.

During the tests, I've seen that some tracks had all their parameters equal to 0 ; I've set something
in the code to prevent this (track is skipped, it avoids code crashing for dividing by 0 when
inverting the curvature, for example), but haven’t tried to understand why those tracks existed.
Fortran code doesn’t treat correctly the cascade candidate when its V0 mass falls both in the
A and in the A mass hypothesis (it does only one of the 2 hypothesis). Influence on the tests ?
(Concerns only a very small percentage of the candidates).

Bfield value is calculated from the momentum of the 1st track of the container, whatever its p, :
could be useful to calculate Bfield only with a track that has a curvature reasonably high (i.e.
not too high p,).

Remove usage of xAns and yAns in StXiFinderMaker.cxx : use directly xOut and yOut.

e Flag x%, negative even when the VO is a Fortran one.
e Change XiFinder algo : allow at most 1 stored Xi candidate per pair (VO0,track). To choose :

take the intersection point that gives the smaller dca.
Etc...

36

